524Uploads
220k+Views
119k+Downloads
Design, engineering and technology
Test and modify the pedestrian crossing system
Create and implement a set of tests for your prototype
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Hundreds of people are killed in accidents on roads in the United Kingdom every year. When schools are situated close to roads there is particular danger to children crossing them. A good, well programmed pedestrian control system can minimise risk and enable people to cross the road safely.
In this unit of learning, learners will integrate a BBC micro:bit based programmable system into a working product prototype.
Activity info, teachers’ notes and curriculum links
In this activity, learners will create and implement a set of tests for their prototype and suggest possible improvements.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Create a portable beep tester
Manufacture the beep tester using the BBC micro:bit
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions, and set targets for future improvement.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels.
Activity info, teachers’ notes and curriculum links
In this activity, learners will use a vacuum former to manufacture a suitable casing and integrate the programmable system into a completed product.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Testing the beep tester
Modify and improve the beep tester design
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Technology can be used in sports to enhance performance and help participants to improve their fitness and stamina. For example, automated beep tests can be used to monitor fitness levels during training sessions, and set targets for future improvement.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an electronic beep test that can be used to help people monitor and improve their fitness levels.
Activity info, teachers’ notes and curriculum links
In this activity, learners will test their product against the design criteria and suggest possible improvements.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Magnetic forces STEM activity
Creating designs for novel products using magnets
In this fun STEM activity students will learn about how magnets can be used to attract or repel each other. They will use their knowledge of how they work to identify and sketch design ideas for two novel products that make use of magnets and magnetism.
This resource is a great way for KS2 students to learn all about magnets and could be used as a one-off activity or as part of a wider unit of work focusing on magnets and magnetism. It can also be used in conjunction with other IET Education resources, developed alongside the School of Engineering at Cardiff University.
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within science and design and technology. This resource focuses on identifying and sketching design ideas for innovative products that make use of magnets.
This activity could be completed as individuals or in small groups.
This activity will take approximately 40-60 minutes to complete.
Tools/resources required
Bar magnets with N and S poles marked
Modelling materials (for extension activity)
Pencils, pens and sketching equipment
CAD software (for extension activity)
Modelling tools and equipment (for extension activity)
Magnetic forces
Magnets are made from materials such as iron and nickel and they have a north pole and a south pole.
When the north pole of a magnet is placed near the south pole of another magnet, they will attract each other. When two poles that are the same are placed near each other, they will repel each other. For example, north to north and south to south.
The engineering context
Engineers need to know the properties of magnets, which materials are magnetic and which materials are non-magnetic. This knowledge could be used when identifying and creating potential solutions to future engineering problems. For example, when developing green transport solutions.
Suggested learning outcomes
By the end of this activity students will be able to describe magnets as having two poles, they will understand how magnets attract or repel each other and they will be able to identify and design ideas for products that make use of magnets.
Download the free Magnetic forces STEM activity sheet!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Make a doorbell circuit
Learn how to make a doorbell circuit in this fun STEM activity for KS2
This fun STEM activity for kids will teach you all about electrical switches and will show you how to build your own doorbell circuit!
In this activity pupils will assemble a doorbell circuit. This develops understanding of how switches are used and how electrical circuits function. This could be used as a KS2 engineering activity or as a design and make or general STEM project.
The presentation, which can be downloaded below, includes an image of the circuit and detailed instructions on preparing and joining the wires.
As an alternative switch for an extension activity, a ‘blister switch’ is an improvement on the metal foil switch. It comprises of two pieces of foil, each connected to the circuit, but separated by a piece of card in which a square or circle is cut. The foil needs to be taut over the cut-out hole. When the top piece of foil is pressed, this should make a connection; and when pressure is released, the foil should cease to make contact.
This activity will take approximately 70 – 90 minutes.
Tools/resources required
Projector/Whiteboard
Components:
4 x AA batteries in holder
Buzzers (e.g. Miniature Electronic Buzzer 6v)
3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires)
2 metal split pin fasteners per pupil
A7 card, 1 piece per pupil
Sticky tape or electrical insulation tape.
(Potential sources for the components include Rapid online and TTS group)
If needed: Wire cutters/strippers
Optional:
Hole punches (ideally single hole punches)
A7 card, 1 per pupil
Metal foil
A4 card and coloured pencils
Scissors
Pre-made model of the circuit, for demonstration
The engineering context
Circuits form the basis of all electrical equipment, ranging from lighting in home to televisions and computers.
An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e. have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches operate as an input device that make a gap in the circuit to stop electricity flowing when they are open. A circuit will normally also have at least one output device, such as a buzzer to produce sound or a bulb to produce light.
Suggested learning outcomes
By the end of this project students will be able to construct an electrical switch and they will also be able to understand that a complete circuit is required for electricity to flow.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
Investigating how hoverboards work
An engaging activity in which students will analyse and investigate how hoverboards work. They will consider the science and technology behind how they are able to levitate, the main features of each design and what that could be improved.
FIRST LEGO League Explore poster
Primary classroom poster summarising the FIRST LEGO League Explore programme.
Download the single poster or order a full set of posters for free from the IET Education website.
Bake a Yule log
Give making a Yule log a STEM twist by using key maths skills to work on the weighing and timing for this delicious Christmas dessert.
This is a great activity that brings together baking skills, mathematics and creativity, and tastes delicious!
The Yule Log is a traditional cake eaten at Christmas. It is thought that this cake originated in France to represent the wooden log that was burned to bring good luck through the winter months. It was hoped that by burning the log and keeping the ashes until the following year, it would ward off evil spirits during the long winter months.
Download the recipe and teaching notes for free.
Oh ho ho, and please do share your experiment highlights with us @IETeducation #SantaLovesSTEM
Crafts with cardboard boxes
In this fun activity for kids, students can make cool crafts out of cardboard boxes.
Use a cardboard box of any size and other recyclables you can find and use safely. We challenge you to get creative and bring one of our ideas to life or go a step further and invent your own project.
Students should be encouraged to draw or write about as many ideas as possible for their cardboard box creation. They could make a castle, robot, rocket, or musical instrument. Learners could even think about a box they could get into or have fun with. No idea is too big!
How long will this activity take?
This activity will take approximately 30-59 minutes to complete.
The engineering context
Engineers must understand the environmental impact of the designs they produce and how their carbon footprint can be reduced, for example, by using recycled or reused materials more.
This activity encourages resourcefulness by repurposing materials that might otherwise be discarded. Children can learn the value of recycling and environmental sustainability by transforming cardboard into imaginative creations.
These crafts also enhance problem-solving skills as children conceptualise, plan, and construct their projects, developing critical thinking and spatial awareness.
Download the free Crafts with cardboard boxes activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Don’t forget to take photos of your finished cardboard box design and share them with us @IETeducation.
Handmade recipe book activity
Design and make a recipe book of kids party food for a celebration
Make a recipe book with your class or child! DIY book binding is easy for kids and you can get creative to create a cookbook in 50-80 minutes.
This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a recipe book for food items that could be served at a street party celebrating a special occasion.
In this activity, learners will design and make a recipe book of food items that could be served at a party. They will research ideas for recipes or create their own and present them in a book format. They will then bind their book together, ready to cook for the party!
**Download our free activity sheet to guide you through. **
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation.
Puff pastry pizza swirls recipe
Design and make puff pastry pizza swirls with a STEM twist.
Puff pastry pizza swirls recipe - easy and fun to do with 4-11 year olds! This can be done as part of a food tech lesson or at home, as the activity is all mapped to the UK curricula for you - download for free below.
This is one of a series of resources designed to allow learners to use the theme of celebration to develop their knowledge and skills in Design & Technology. This resource focuses on the designing and making of a food item to serve at a street party celebrating the occasion.
This activity could be used as a main lesson activity to teach sketching design ideas and preparing food products for particular events. It could also be used as part of a wider scheme of learning to support focused practical skills within food lessons or – through measuring and weighing ingredients – to support the development of basic mathematical skills.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation
Make your own diya for Diwali (secondary)
Making a ghee lamp to celebrate Diwali
A diya is an oil lamp that represents the triumph of light over dark, and good over evil. Diyas are traditionally made from clay or mud, with a cotton wick dipped in ghee to celebrate Diwali, the festival of lights.
This resource focusses on making, decorating and safely using a diya. This could be used as a one-off main lesson activity to develop making skills with air drying clay. Alternatively, it could be used as a part of a wider scheme of work to develop designing and making skills in Design and Technology, and Art, or to build links with Religious Education.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions as either a classroom lesson plan or PowerPoint presentation
And don’t forget to share your learning highlights and final creations with us on social media @IETEducation
Build an Easter bunny basket
Making structures from card and assembling these into baskets
In this hands-on STEM activity for kids, students will learn about 3D structures within a graphics projects. The project will involve using templates to help them cut out the parts for an Easter bunny basket.
This fun exercise is aimed at primary school children and could be used as a main lesson activity, to teach learners about simple structures made from separate parts.
This is one of a set of free resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building an Easter bunny-shaped basket.
The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners.
Learners can then follow these steps to build their own DIY Easter bunny basket. Once learners have completed each step for themselves, the teacher can explain how nets are used to make objects and how separate parts are used to make a larger structure.
Learners will share their completed bunny baskets with the class. What do you think went well? What could be improved?
This activity will take approximately 50 – 80 minutes to complete.
Tools/resources required
Glue sticks
Card
Scissors
Cotton wool (for the bunny tails)
The engineering context
Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products.
Suggested learning outcomes
By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny basket structure from card parts.
Download the free Build an Easter Bunny Basket activity sheet below! Also includes a bonus wordsearch to enhance sticky learning.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Make a DIY Easter Bunny
Making an Easter bunny puppet with moving arms and legs
In this activity students will learn about simple mechanisms using linkages made from paper products. Learners will have an opportunity to use a template to help them cut out the parts for a cardboard Easter bouncing bunny.
This fun STEM challenge aimed at primary school children could be used as a main lesson activity, to teach learners about linkages.
This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, which uses linkages to make the limbs of a bunny move.
Follow this step-by-step guide to make your own Easter bouncing bunny.
Learners will complete each step for themselves. Once everyone has made their bouncing bunny, the teacher will discuss the results of the activity with learners. The teacher will also explain how linkages are used to make objects move.
Download the free activity sheet for more detailed instructions, teachers notes and for optional extension work. Also includes a fun bonus activity to enhance sticky learning.
This exercise will take approximately 50 – 80 minutes.
Tools/resources required
Glue sticks
Card or cardboard
Scissors
String
Brass fasteners
Pencils
Erasers/sticky tack
Elastic bands
The engineering context
Engineers must have a good understanding of mechanisms. Mechanisms are used in every machine that has moving parts, from trains, cars, and washing machines to a space rocket.
Suggested learning outcomes
By the end of this activity students should be able to understand how to use a linkage to create movement and they will be able to make and assemble a bouncing bunny with moving arms and legs.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Make an amazing bunny pop up card
Learn about 3D structures and make a bunny pop up card in this fun Easter STEM activity for kids
In this fun STEM activity for kids, students will learn about graphic products and use templates to help them cut out the parts for a homemade Easter card.
This activity is aimed at primary school children and could be used as a main lesson activity, to teach learners about the use of templates.
This is one of a set of resources designed to allow students to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making a graphics project, in this case an Easter pop-up bunny card.
The teacher will first print the activity sheet, which can be downloaded below, onto thin card and distribute to the learners.
Learners can then follow these steps to make their own homemade Easter bunny pop-up card. Once learners have completed each step for themselves, the teacher can explain why templates are used to make objects and how separate parts are used to make a larger structure.
Learners will share their completed Easter pop-up cards with the class. What do you think went well? What could be improved?
This activity will take approximately 50 – 80 minutes to complete.
Tools/resources required
Glue sticks
Card (various colours)
Scissors
Coloured paper
The engineering context
Engineers use nets and card to allow them to make scale 3D models of buildings and other structures, as well as packaging for products.
Suggested learning outcomes
By the end of this Easter STEM challenge learners will be able to make and assemble an Easter pop-up card from separate parts.
Download the free Make an amazing Easter pop up card activity sheet. Also included is a bonus wordsearch to enhance sticky learning.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Product integration - Design the casing for your food temperature probe
In this activity students will design a prototype for a casing and housing a food temperature probe.
The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons.
Activity: Designing the casing for a food temperature probe
This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product.
Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices.
Students can also create a prototype of their design using modelling materials (e.g., card).
Download our activity overview for a detailed lesson plan on product integration.
The engineering context
Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy.
Suggested learning outcomes
By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language.
Download our activity sheet and other teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation below.
Please do share your highlights with us @IETeducation
Make a paper house
In this activity learners will design, make and assemble a fold out pop-up structure that shows a self-contained, four room dwelling.
This activity could be used as a main lesson activity to teach learners about the design of folding structures using graphic materials; alternatively, it could be used as an introduction to designing for a client, where the learners could be given a target group such as wheelchair users or a young family. This could also be used as one of several activities within a wider scheme of learning focussing on structures and Design for Living.
Resources required:
Scissors
Paper or Card
Glue
Rulers
Pens, coloured pencils or paint
Paperclips
Optional: three pre-made rooms
Optional: a pre-made assembled example
Download our activity sheet and other related resources for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
You can download our step-by-step instructions below as either a classroom lesson plan or PowerPoint presentation.
Please do share your highlights with us @IETeducation.
Design a sports wheelchair
Design a sports wheelchair for a Marathon race
This activity is focused on the design of racing wheelchairs, but also develops understanding about the use of search engines. It considers the use of different search terms when using internet-based research using search engines and how this affects the outcomes of the search. The main activity involves designing a racing wheelchair considering key aspects to enhance its performance.
The first London Marathon wheelchair race took place in 1983 in which 19 people took part with 17 completing the race. The winner, Gordon Perry, set a winning time of just over 3 hours and 20 minutes. With the advancements in engineering and technology since that date, wheelchair racing has come a long way, and in 2021, Marcel Hug won the London Marathon’s men’s wheelchair race setting a new course record with a time of just over 1 hour and 26 minutes!
Activity info, teachers’ notes and curriculum links
In this activity, learners will use the theme of the London Marathon to respond to a design context, investigate the context on the internet and design a wheelchair for sports use.
This activity could be used as a main lesson activity to develop skills in designing. It could also be used to teach learners about how to search the internet effectively to gain the information that is most applicable to their requirements.
All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery.
Tools/resources required
Pens, pencils and drawing instruments
Computer access for internet searching
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Sports logo developement
A project to design a sports logo
This STEM activity is inspired by the Olympics. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice.
This free resource, aimed at secondary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided below.
This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design.
Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want the logo to represent the sport and be eye-catching.
Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport.
They need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo?
Then sketch their idea for a sports logo that meets the needs of both the brief and the design criteria given.
Designs can be produced on the handout provided or on blank A4/43 paper.
Once finished, ask three other people to suggest one improvement each to the design. Then select one of these suggested improvements and use it to update the design.
This exercise should take approximately 50-60 minutes to complete.
What you will need:
Projector/whiteboard
Sketching equipment
Coloured pencils
The engineering context
Many top sport teams have logos that have become famous and appear on all their branded products.
Suggest learning outcome
By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
And please do remember to share your activity highlights with us @IETeducation
Sports logo design
Learn how to design a new logo for a sports team
This STEM activity for kids is inspired by the Football World Cup but can be linked to any sporting event, the Olympics for example. Students will learn about logo design by designing and creating a sports logo for a sports team of their choice.
This exercise, aimed at primary school students, will develop learners’ knowledge and skills in design and technology and engineering. Activity sheets for students and resources for teachers are provided.
This fun resource could be used as a one-off main lesson activity to build knowledge of branding and logos. It could also be used as part of a wider scheme of learning focussing on developing creative skills within graphics and graphic design.
Imagine that a sports team is designing a new kit and your students have been asked to design a new logo for the team. They want to logo to represent the sport and be eye-catching.
Your students will design a sports logo for a sports team of their choice. Their design should use an image or a simple shape that represents the sport.
They will need to think about how a sports logo is created from a single image. How are colours used to show movement on an object? How can an image of a sports person be converted into a sports logo? How can different shapes be used to add a background to the image? How do you add text to the logo?
This exercise should take approximately 50-60 minutes to complete.
What you will need
Projector/whiteboard
Sketching equipment
Coloured pencils
The engineering context
Many top sport teams have logos that have become famous and appear on all their branded products.
Suggested learning outcomes
By the end of this activity students will be able to design a sports team logo. They will also be able to communicate design ideas using sketches, notes and annotations.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation